Obiettivi specifici di apprendimento del 5° anno
Obiettivi specifici di apprendimento del 5° anno
Lo studente completerà lo studio dell’elettromagnetismo con l’induzione magnetica e le sue applicazioni, per giungere, privilegiando gli aspetti concettuali, alla sintesi costituita dalle equazioni di Maxwell. Lo studente affronterà anche lo studio delle onde elettromagnetiche, della loro produzione e propagazione, dei loro effetti e delle loro applicazioni nelle varie bande di frequenza.
Lo studente completerà lo studio dell’elettromagnetismo con l’induzione magnetica e le sue applicazioni, per giungere, privilegiando gli aspetti concettuali, alla sintesi costituita dalle equazioni di Maxwell. Lo studente affronterà anche lo studio delle onde elettromagnetiche, della loro produzione e propagazione, dei loro effetti e delle loro applicazioni nelle varie bande di frequenza.
Il percorso didattico comprenderà le conoscenze sviluppate nel XX secolo relative al microcosmo e al macrocosmo, accostando le problematiche che storicamente hanno portato ai nuovi concetti di spazio e tempo, massa ed energia. L’insegnante dovrà prestare attenzione a utilizzare un formalismo matematico accessibile agli studenti, ponendo sempre in evidenza i concetti fondanti.
Il percorso didattico comprenderà le conoscenze sviluppate nel XX secolo relative al microcosmo e al macrocosmo, accostando le problematiche che storicamente hanno portato ai nuovi concetti di spazio e tempo, massa ed energia. L’insegnante dovrà prestare attenzione a utilizzare un formalismo matematico accessibile agli studenti, ponendo sempre in evidenza i concetti fondanti.
Lo studio della teoria della relatività ristretta di Einstein porterà lo studente a confrontarsi con la simultaneità degli eventi, la dilatazione dei tempi e la contrazione delle lunghezze; l’aver affrontato l’equivalenza massa-energia gli permetterà di sviluppare un’interpretazione energetica dei fenomeni nucleari (radioattività, fissione, fusione).
Lo studio della teoria della relatività ristretta di Einstein porterà lo studente a confrontarsi con la simultaneità degli eventi, la dilatazione dei tempi e la contrazione delle lunghezze; l’aver affrontato l’equivalenza massa-energia gli permetterà di sviluppare un’interpretazione energetica dei fenomeni nucleari (radioattività, fissione, fusione).
L’affermarsi del modello del quanto di luce potrà essere introdotto attraverso lo studio della radiazione termica e dell’ipotesi di Planck (affrontati anche solo in modo qualitativo), e sarà sviluppato da un lato con lo studio dell’effetto fotoelettrico e della sua interpretazione da parte di Einstein, e dall’altro lato con la discussione delle teorie e dei risultati sperimentali che evidenziano la presenza di livelli energetici discreti nell’atomo. L’evidenza sperimentale della natura ondulatoria della materia, postulata da De Broglie, ed il principio di indeterminazione potrebbero concludere il percorso in modo significativo. [...]
L’affermarsi del modello del quanto di luce potrà essere introdotto attraverso lo studio della radiazione termica e dell’ipotesi di Planck (affrontati anche solo in modo qualitativo), e sarà sviluppato da un lato con lo studio dell’effetto fotoelettrico e della sua interpretazione da parte di Einstein, e dall’altro lato con la discussione delle teorie e dei risultati sperimentali che evidenziano la presenza di livelli energetici discreti nell’atomo. L’evidenza sperimentale della natura ondulatoria della materia, postulata da De Broglie, ed il principio di indeterminazione potrebbero concludere il percorso in modo significativo. [...]